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monoclinic binary axes in phase b is mainly controlled 
by long-range Coulomb interactions (Salje & Iishi, 
1977) this is not true for the accompanying tilts of PO4 
groups. The critical temperature range (slow motion 
regime) is therefore larger than, for example, in SrTiO 3 
(M/iller & Berlinger, 1971). The correlation time of 
crystal field fluctuations was found to be greater than 
10 -s s between 448 and 453 K (Razeghi & Houlier, 
1978). Accordingly, phonon modes are overdamped in 
neutron scattering (Joffrin et al., 1979) and infrared 
experiments (Luspin, Servoin & Gervais, 1979). 
Guimaraes (1979b) found highly anisotropic B 
factors in X-ray experiments, and the retarded splitting 
of Raman and infrared lines (Benoit, 1976) is probably 
also due to long-range fluctuations with extremely long 
relaxation times. From the given experimental results, 
the temperature range of the fluctuation regime is larger 
in Pb3(AsO4) 2 and some mixed crystals than in 
Pb3(PO4) 2. We therefore propose neutron scattering 
experiments, similar to those performed by Joffrin et al. 
(1979) on crystals with x ~> 0.6, where the thermal 
range of order-parameter fluctuations is enhanced 
compared with Pb3(PO4) 2. 

Note added in proof: While this paper was in the press 
Dr Glazer informed us about the recent results of 
Wood, Wadhawan & Glazer (1981) concerning the 
temperature dependence of the optical birefringence of 
Pb3(PO4) 2. Their experimental results are in very good 
agreement with those shown in Fig. 10, x = 0. Their 
critical exponent fl = ¼ for temperatures sufficiently 
below T o is identical with ours. It is noteworthy that the 
regime with fl = ½ near T o appears just for Pb3(PO4) 2 
but not for all the quaternary oxides. 

We are grateful to Dr Glazer for this information 
and for helpful discussion. 

References 

AIzu, K. (1970). J. Phys. Soc. Jpn, 28, 706-716. 
BENOIT, J. P. (1976). Ferroelectrics, 13, 331-332. 
BENOIT, J. P. & CHAPELLE, J. P. (1974). Solid State 

Commun. 15, 531-533. 
BRIXNER, L. P., BIERSTEDT, P. E. & JAEP, W. F. (1973). 

Mater. Res. Bull. 8, 497-504. 
CHABIN, M. & GILLETTA, F. (1977). J. Appl. Cryst. 10, 

247-251. 
CHAPELLE, J. P., CAO XUAN AN & BENOIT, J. P. (1976). 

Solid State Commun. 19, 573-575. 
DECKER, D. L., PETERSEN, S., DEBRAY, D. & LAMBERT, M. 

(1979). Phys. Rev. B, 19, 3552-3555. 
GILLETTA, F., CHABIN, M. & CAO XUAN AN (1976). Phys. 

Status Solidi A, 35, 545-549. 
GUIMARAES, D. M. C. (1979a). Phase Transitions, l, 

143-154. 
GUIMARAES, D. M. C. (1979b). Acta Cryst. A35, 108-114. 
HODENBERG, R. VON (1974). Ber. Dtsch Keram. Ges. 51, 

64-68. 
HODENBERG, R. VON • SALJE, E. (1977). Mater. Res. Bull. 

12, 1029-1034. 
JOFFRIN, C., BENOIT, J. P., CURRANT, R. & LAMBERT, M. 

(1979). J. Phys. (Paris), 40, 1185-1195. 
JOFFRIN, C., BENOIT, J. P., DESCHAMPS, L. & LAMBERT, M. 

(1977). J. Phys. (Paris), 38, 205-213. 
LuSPIN, Y., SERVOrN, J. L. & GERVAIS, F. (1979). 3". Phys. 

Chem. Solids, 40, 661-668. 
MOLLER, K. A. & BERLINGER, W. (1971). Phys. Rev. Lett. 

26, 13-16. 
RAZEGHI, M. & HOULmR, B. (1978). Phys. Status Solidi B, 

89, K135-K137. 
SALJE, E. & HOPPMANN, G. (1976). Mater. Res. Bull. 11, 

1545-1550. 
SALJE, E. & IISHI, K. (1977). Acta Cryst. A33, 399-408. 
TOLEOANO, J. C., PATEAU, L., Pgnvmx, J., AUBR/~E, J. & 

MORrN, D. (1975). Mater. Res. Bull. 10, 103-112. 
TORRES, J. (1975). Phys. Status Solidi B, 71, 141-150. 
TORRES, J., Atral~E, J. & BRANDOtJ, J. (1974). Opt. 

Commun. 12, 416-417. 
WOOD, I. G., WADHAWAN, V. K. & GLAZER, A. M. (1981). 

J. Phys. C. In the press. 

Acta Cryst. (1981). A37, 153-162 

The Effect of Data Truncation on the Measurability of Bijvoet Differences 

BY S. PARTHASARATHY AND M. N. PONNUSWAMY 

Department of  Crystallography and Biophysics,* University of  Madras, Guindy Campus, Madras-600025, India 

(Received 1 April 1980; accepted 13 May 1980) 

Abstract 

Theoretical expressions for the complementary cumu- 
lative function of the Bijvoet ratio X applicable to a 
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truncated data set are worked out for a non-centro- 
symmetric crystal containing P anomalous scatterers in 
the unit cell [P = 1 and many (MN and MC cases)] 
besides a large number of normal scatterers. These 
expressions contain the truncation limit Yt as a 
parameter of the distribution. The results obtained are 
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154 THE MEASURABILITY OF BIJVOET DIFFERENCES 

used to discuss the effect of data truncation arising 
from the non-observability of extremely weak reflec- 
tions on the measurability of Bijvoet differences. 

1. Introduction 

The earlier statistical studies on the normalized Bijvoet 
differences and the Bijvoet ratio were concerned with 
the influence of the structural features characterizing 
the crystal (e.g. the space-group symmetry, the number 
of anomalous scatterers per unit cell) on the measur- 
ability of Bijvoet differences (for a summary, see 
Srinivasan & Parthasarathy, 1976 - hereafter SP). It is 
clear that the measurability of Bijvoet differences will 
also be influenced by another important factor which is 
non-structural in origin but which is determined by the 
limitation of physical measurement itself. It is known 
that in any crystal not all theoretically possible 
reflections in a given sin 0/2 range can actually be 
observed: there always exists a finite percentage of 
reflections whose intensities are too weak to be 
measured. Owing to the nonobservability of extremely 
weak reflections the observed data suffers a truncation 
(at the lower end).* It is relevant to ask how such a 
data truncation would affect the measurability of 
Bijvoet differences in a given crystal. A study of this 
problem is also interesting since larger Bijvoet ratios 
are generally believed to occur among extremely weak 
reflections (Ramachandran & Srinivasan, 1970). We 
shall therefore analyse this problem from a study of the 
theoretical complementary cumulative function (c.c.f. 
hereafter) of the Bijvoet ratio X]" applicable to such 
truncated data. We shall consider three cases, namely 
the one-atom and many-atom (P = M N )  and many- 
atom (P = M C )  cases (for the notation and 
terminology see SP). In order to avoid theoretical 
complications, we shall restrict our studies to triclinic 
crystals of space group P1. However, the conclusions 
arrived at from the present study may be expected 
broadly to hold good in general. 

The method of derivation of the c.c.f, of X is 
described in § 2. Since X is linearly related to another 
random variable v [see equation (2) for the definition of 
v] and since it is convenient to evaluate the c.c.f, of X 
from the c.c.f, of v, the c.c.f.'s of v for the various cases 
are derived in {} 3. A discussion of the theoretical 
results is given in § 4. The probability formula required 
for the derivation of the truncated distribution from the 
untruncated distribution is derived in the Appendix. 

* The truncated data consist of those reflections for which YN > Yt 
where Yt is the threshold value of the normalized structure amplitude 
YN" 

t This is denoted by J in Parthasarathy & Parthasarathi (1973) 
(hereafter PP). 

2. Method of  derivation of  the complementary cumula- 
tive function of  X 

Consider a non-centrosymmetric crystal containing N 
atoms in the unit cell of which P atoms are anomalous 
scatterers (of the same type) and the remaining Q(= N 
- P) atoms are normal scatterers (of similar scattering 
power). The Bijvoet ratio X for the inverse reflections 
(hkl) and (hk]) has been shown to be [see equations (2) 
and (5) of PP] 

X = 4 k v  (1) 

where 

v = tr 1 yp sin Oo/Y N, 0 < 00 < zc/2. (2) 

P(V,YN, O0) [i.e. the joint probability density function 
(hereafter p.d.f.) of v, YN and 0 o] for the one-atom and 
many-atom (P = M C )  cases and P(V,yN) (i.e. the joint 
p.d.f, of v and YN) for the many-atom (P = M N )  case 
(valid for the untruncated data) are available in PP. 
From these functions and the result (A4) the joint p.d.f. 
applicable to the truncated data [i.e. Pt(V,Yu, Oo) or 
Pt(V,YN)] can be derived. The theoretical expression for 
the c.c.f, of v applicable to the truncated data [denoted 
by N~,v(Vo), where v0 is a fixed value of v] can be 
derived from the truncated distribution function 
Pt(V,yu, 00) [or Pt(V,YN)] and this aspect is considered 
in § 3. Since X = 4kv the c.c.f, of X valid for the 
truncated data [denoted by N~t,x(Xo), where X 0 is a 
fixed value of X] can be obtained 

N~,x(X o) = Nf, v ( Xo/4k  ) 

= 1 - Nt ,  (Xo/4k) .  (3) 

We shall therefore derive the c.c.f.'s* of v for the cases 
P = 1, M N  and M C  in § 3. 

3. Derivation of  the complementary cumulative func- 
tion of  v for the various cases 

One-atom case 

The joint p.d.f, of v, YN and 00 (valid for the 
untruncated data) for this case has been shown to be 
[see equation (12) of PP] 

4Y~v Y~v 1 +  
P(V,YN, 0o) = rca2 v exp -- a--~ 

x cosh (2y~ v cot Oo/a2~) 

× 8 ( Y N -  01 sin Oo/V), 

O<YN<O0,  0 < V < O O ,  0 < 0 0 < Z r / 2 .  (4) 

* In this paper we shall, for convenience, refer to the c.c.f, of v 
corresponding to the truncated data simply as the c.c.f, of v. We 
shall denote the cumulative function (hereafter c.f.) of v applicable 
to the truncated data by Nt, v(Vo). 
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The joint p.d.f, of v, YN and go applicable to the 
truncated data will therefore be given by [see (A4)]  

P(V,YN, Oo) 
Pt(v,yN, Oo) - , (5) 

say, where fll is the value of the c.c.f, of YN for YN = Yr 
From the p.d.f, of YN for the one-atom case (SP) it 
follows that 

2 exp (--0~/0~) 
i l l =  1 - 

~' [_ 
o °~1 1°[ °~ jdYN" (6) 

It is convenient to use the simplifying notation 

sin Oo = S, cos Oo = C. (7) 

Substituting (4) in (5) and using the notation of (7) 
we obtain 

( O v s) Pt(V,YN, Oo)=A(V,YN, Oo) ~ Ylv , (8) 

where A (v,y N, 00) is defined to be 

4Y------~eN exp YzN 1 + 
A(v,y, , ,  Oo) - m~ ~, v a~ 

a~ " (9) 

The restriction on the range of v [see (8)] arises from 
the restriction of YN to the interval Yt to c~ and relation 
(2). The joint p.d.f, of v and 00 valid for the truncated 
data can be obtained from (8) as 

o0 

Pt(v, Oo) = f Pt(v'ymOo ) dYN 
Yt 

= A(V,YN, Oo) 5 N V " 
Yt 

Making use of the well known property of the Dirac 
delta function in (10) we obtain 

Pt(v, Oo)=A(v ° l S  Oo ) if 01s , , >-- Y t  (11)  
/) v 

= 0 otherwise. 

Making use of (9) in (11) we obtain [ (s2)] 4o2 S 2 01 1 + 
Pt(v, 0o) -- zro~ fll v3 exp -- 0-"~z z ~ -  

X cosh o'~v ]" (12) 

The joint p.d.f, in (12) is non-zero only in the region 
defined by 

(vYt t °1 sin -1 --< 00 -- zr/2, 0 _< v _ - - .  (13) 
\ 01 ] Yt 

The p.d.f, of v valid for the truncated data can be 
obtained from (12) as 

r~/2 o~ S 2 401 e-OV°g 
S 2 exp Pt(v) = rca~ fll v 3 . .  022 v 2 

sin-~(vy ]a,) 

[2o cs] 
x cosh 0~ v ] d0°' (14) 

The c.c.f, of v will therefore be given by 

r°~'Y' 4o21 e -°~/°~ 
N~,v(Vo) = j Pt (v )  dv = 

7~0 2 
v 0 

°"d~ .,2 [ o2 Sq 

Vo sin-~(vy,/°~) [2o cs 1 
x c o s h |  ~ o~v ] dO0. (15) 

Interchanging the order of integration we can rewrite 
(15) as 

n/2 

NtC, v(Vo ) _ 4o1 e -°~'M f S 2 d0o 
7C'02 ~1 sirl-l(VaFt/Ol) 

o,s/y, [ 01S 2] 
x f exp - a - ~ v 2 j  

D o 

[2oI  CS ] dv 
x cosh 022 v -V -~'" 

Making use of the transformation 

Oo=~¢, v=-,x 
we can rewrite (16) as 

1 

Nf, v(Vo)_ 20~ e -°~/°~ ( 
o~Pl 

(2 /n )  s i n -  J (VoYt/O j ) 

s~ d~ 

f ] exp x a - m S~x  2 
yt/olSj (72 

x dx, G~ 
where S 1 and C 1 are defined to be 

$1 = sin (2  ~° ) , C1 = c°s (2  ~o ) • 

(16) 

(17) 

(18) 

(19) 



156 THE MEASURABILITY OF BIJVOET DIFFERENCES 

Carrying out the integration over x in (18) using the 
formula 

re 1 { 
f x e -°'x2 cosh (bx) dx = - -  2 e -ar~ cosh (br,) 

4a 

r ' - 2  e-ar~c°sh (br2) + ~/~ b (-~a) 
V/- d exp 

x [erf (v/ar2 2~/~) -- erf (V/-dr2 + ~ )  

b 
+ erf (V/-drl + ~--~)  - erf ( V/-dr* 2~/a)] }' 

we obtain 
1 1 ( 

f N~'v(v°) = 2fl, 2 e -°2 /°2  
(2/n) sin- ~ (voy,/a ~) 

x e -y~,/°~" cosh o5 

- exp l -  °2 v----~0 ] cosh o'2 V o . 

v o, ( 1 + C~ exp - 

o, °5 ! 

x{erf ( "yt+ °2a'C") 

--erf (.Yt--O~1 C1)+ er f [~21 (V~--Ct] 

0 < v o <_ °I/Y,, (20) 
which is to be evaluated numerically. 

Many-atom (P = MN) case 
The joint p.d.f, of v and YN for this case has been 

shown to be [see (B 1) of PP] 

4 y~ exp[_y~c(V2+O~t7~)l 
P(V'YN) = ~ 01 02 °~ °2 ' 

O < v < o o ,  O<_YN<O0. (21) 

The joint p.d.f, of v and YN applicable to the truncated 
data will therefore be given by [see (A4)] 

P(V,YN) 4 y~ - -  exp [--12 2 y2], 
Pt(V'YN)- ~MN ~ flMN °1 02 

O < V < O0, Yt < yN < ~ ,  (22) 

where flMN is the value of the c.c.f, ofy  N for YN = Yt and 
a is defined by 

/)2 + o~ o~ 
122 __ (23) 

Since YN for the present case follows the acentric 
Wilson (1949) distribution, flUN will be given by 

oO 

flMN = f 2YNeXp(--y2) dYN=exp (--Yt)'2 (24) 
Yt 

From (22) we obtain the p.d.f, of /) valid for the 
truncated data to be 

O0 

4 fy2exp[--a2y2ldYN. (25) 
Pt(v)= ~ flMN 0, °2 

Yt 

Changing the variable of integration from YN to X by 
using the substitution a2 y~ = x, then using the 
definition and the following properties of the in- 
complete gamma function (Abramowitz & Stegtm, 
1965) 

r(a,x) + ?(a,x)= r(a) 

Y(~x) ,  = V/-~erf(v/~)- v / ~ e x p ( - x ) 2  

and finally substituting for a from (23) we obtain 
1 (. °2 °2 2Yt 01 °2 

Pt(v) = ~MN ~( v2 + °2 0~)3/2 + - -~  @2 + °2 °2) 

[ (/)2 + o~ o2)y,~)] 
× exp - 0~ 02 

- -  ( /)2 + ° 2  ° 2 ) 3 / 2  erf °1  0"2 Y " 

The c.c.f, of v will therefore be given by 
Vo 

N~,v(V o) = 1 -- Nt.v(Vo) : 1 - f Pt(v) dv 
o 

=1 ~ (~+o~o2)  ~2d~ 

0 

x exp - ale2 Y~ 

o~ G2 
(v 2 + o] o2) ~'2 

xerf((v2+°~°~)' /2 )] } Yt dv . 

0" 1 0" 2 

(26) 

(27) 
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After evaluating the first integral on the r.h.s, of (27) we 
can rewrite (27) as 

1 (. v o 
N~(vo) = 1 - - - -  

~MN ( v2 + 0"2 0"2)1/2 

i°{ yt , + 0"' 0"~ V ~  ( ~  + 0"20"I) 

(_(~2+°20-9) 
× exp 0-2 0"] Y~ 

0" 1 0" 2 

(V2 + 0"2 0"2)3'2 

x erf[ (v2 + 0-2 0-2)v2 q} v) 
y d . 

0-I 0"2 

(28) 
The above integral is to be evaluated numerically. 

Many-atom (P = MC) case 
The joint p.d.f, of v, YN and Oo for this case is known 

to be [see (17) of PP] [ (  v2)] 4V/~ y2 exp YA 1+ 
P(V'YN' O°)- z~/2 o, a 2 S a ] --fff- 

[2y2 sC ] (29) 
X cosh [ 0-22 , 

where C and S are defined in (7) and g is defined by 

1 + o  2 
g - - - .  (30) 

2 a  2 

The joint p.d.f, of v, YN and 00 applicable to the 
truncated data will therefore be given by [(see A4)] 

P (V,YN, O0) 4 V/2 y~ 
Pt(V,YN, OO) = -- __ 

~MC ~3/2 0-I a2 ~MC S 

xexp a--~2 + "-~-/J 

[m c] 
xcosh [ 0-2S ' 

0_<V <oO, yt<_YN<OO, O<_OO<_~Z/2, (31) 

where time is the value of the c.c.f, of YN for YN = YC 
From the p.d.f, ofy N for this case (see SP) we obtain 

2  t[x2] 
flMC = 1-- [a2( 1 + 0.2)11/2 f X exp 0-2(1 + a 2) 

0 ×;[ °Lot(1 + °2)] dx. (32) 

The c.f. of v valid for the truncated data will therefore 
be given by 

v o n / 2  oO 

Nt, v(Vo) = f f f Pt(V,YN, O0)dv dyNdO o. (33, 
0 0 Y t  

Making use of (31) in (33) we obtain 

4V/2 ?/2d0o 

Nt'v(°°) : 7~3/2 0-1 0-1 flMC g S 

oo 

x f y2 exp (_y2/0-2) dy N 
Yt  

13 0 

o~ s 2 ] 

x cosh [ a 2 dv. (34) 

f e -~2 cosh (bx) dx - 
0 

Carrying out the integration over v by the formula 

°xp 

we obtain 

N~,~(Vo) = 

-,-erf( r 
~/2 co 

v~ ; dOof yN 

× exp J 

{eft[ 02x/~sYN (gVO+ CS)] 

+ erf [ YN 
t 0-2 v/g S 

(gvo-CS)] } dy N. (35) 

Making use of the substitution y2 = z and then using 
the transformations 

Z D m 
X ~03 

0 0 -- 
1 - - x  2 

and further employing the simplifying notation 
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[ Z(g-Z C2)] 
(0(z, 00) = exp a~ g J 

X erfL\vz~ ] \ S 

+ erf [ \ a E g ]  \ S 

we can rewrite (35) as 

1 
Nt, v(Vo) = 

2 V/2ala2V/g~Mc 

y y  - - -  x ~o 1 - x '  2 ( l - x )  2"(37) 
0 y~/Cl+y~) 

The c.c.f, of v will therefore be given by 

1 
N~,~(Vo)= 1 -  

2 V/-2OIa2V~flMC 
1 1 

x ~0 1 - x  2 ( l - x )  2'(38) 
o ~/(I + y,9 

The double integral on the r.h.s, of (38) is to be 
evaluated numerically. 

4. Discuss ion of  the theoretical results 

By definition N~, x(Xo) denotes the fractional number of 
reflections for which X _ X 0 relative to a population 
consisting of these reflections (in a given region of sin 
0/2) for which YN >- Yr However, for discussing the 
effect of data truncation on the measurability of Bijvoet 
differences the more appropriate quantity is the 
fractional number of reflections for which X >_ X 0 and 
YN >-- Yt relative to the population consisting of all the 
theoretically possible independent reflections in the 
given range of sin 0/2 and we shall denote this fraction 
by the symbol ft(Xo). It is shown presently that ft(X0) 
is functionally related to N~,x(X o) so thatft(X0) can be 
evaluated from a knowledge of N~, x(Xo). 

Let n denote the number of all theoretically possible 
independent reflections within a given range of sin 0/2 
in any particular crystal. Among these n reflections, let 
n t be the number of reflections for which YN >- Yr 
Among these n t reflections let n o be the number of 
reflections for which X ___ X 0. Thus n o denotes the 
number of reflections for which X ___ X 0 and YN >- Yt 
simultaneously. By definition we have 

N~,x(Xo) = no/n t (39) 

and 

NCyN(yt) = nt/n, (40) 

where NCyN(yt) denotes the value of the c.c.f, ofy  N for YN 

= Yt corresponding to the untruncated data of the 
crystal. Since by definition ft(X0) = (no~n) we can 
obtain from (39) and (40) 

f t (Xo) = (nt/n)(no/nt) = N~N(Y,) Net, x(Xo). (41) 

It is obvious that N~,~(yt) is the same as the quantity fl~, 
(P = 1, M N  and MC). Hence we can rewrite (41) as 

ft(Xo)=fleNCt, x(Xo) , P =  1, M N a n d M C .  (42) 

For any given Yt, fll and flMC can be evaluated 
numerically from (6) and (32) respectively and flMN can 
be readily calculated from (24). For a given situation 
(i.e. P = 1, M N  or MC) and given k, a 2 and Yt, 
N~.x(Xo) would be equal to Ni~v (v = Xo/4k) [see (3)]. 
The value of N c v(Xo/4k) for given X 0, k, a 2 and Yt can t, 
in turn be evaluated numerically from (20), (28) and 
(38) for the one-atom, many-atom (P = MN) and 
many-atom (P = MC) cases respectively. From the 
values of N~.v(Xo/4k) and ill, thus obtained the value of 
ft(X0) for given X o, oi, k and Yt can be evaluated [see 
(42)]. The values of f t(0.05) thus obtained for the cases 
P = 1, M N  and M C  are given in Table 1 for different 
values of k and a2 corresponding to two typical values 
of  Yt, namely Yt = 0* and 0.3. Table 2 contains the 
value of ft(0.1) for the various cases.t To illustrate the 
general nature of the dependence of ft(0" 1) on Yt the 
curves offt(0.1) vs Yt for different fixed values of k and 
a 2 are also shown in Fig. 1 for the many-atom (MN) 
case. 

The quantity ft(0.1) represents the fractional 
number of reflections for which the Bijvoet ratio X >_ 
0.1 and the normalized structure amplitude YN > Yt 
(which represents the truncation limit). For given P, a] 
and k (i.e. for a given crystal and a given radiation) the 
curve offt(0.1) vs Yt has its maximum aty  t = 0 and the 
value of this maximum represents the quantity 
N~(0.1) corresponding to the untruncated data. Thus 
each curve in Fig. 1 starts from the relevant value 
N~(0.1) corresponding to the untruncated data and 
decreases systematically asyt increases. This decrease 
is small initially (e.g. for Yt < 0.15) and becomes rapid 
and practically linear for the middle range of values of 
Yt (e.g. 0.3 < Yt < 1). f t ( 0 . 1 )  takes very low values for 
large values o f y  t (e.g. Yt > 1-5). This behaviour is to be 
expected physically. 

It is interesting to see that in the one-atom case the 
behaviour of ft(0" 1) vs Yt differs somewhat for high and 
low values of a2. Thus, while for the situation a2 < 0.5, 
the behaviour is similar to that obtained in the other 
cases, for the situation a2 > 0.7 the value of f t(0-1) is 
practically constant for low values of Yr Thus, while 
the fractional number of reflections whose Bijvoet 
differences could be measured would decrease a tittle 
due to data truncation arising from unobserved 

* This corresponds to the untruncated data. 
t Tables of ft(0.1) for Yt = 0, 0.15, 0.2, 0.3 . . . . .  1.5 are 

available in Ponnuswamy (1979). 
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reflections when a~ < 0.5,  this would remain practically (Ponnuswamy & Parthasarathy, 1977). The Bijvoet 
unaffected when a~is large, difference data for the observed reflections whose 

The truncation limit Yt for actual data of  crystals intensities are close to this truncation limit may not be 
would generally be in the neighbourhood of  0.15 very accurate. Hence in our discussion we shall assume 

Table 1 The value o,/'~(0.05) (in %) as a function ofk  Table 2 The value offt(O. 10) (in %) as a function o fk  
and a~ for the cases P = 1, MN and MC when Yt = 0 and a~ for the cases P = 1, MN and MC when Yt = 0 

and O. 3 and O. 3 
If  t(0.05) denotes the fractional number of reflections for which [ft(0.05) denotes the fractional number of reflections for which 

X > 0.05 andy~ > - - Y t ' ]  X > 0"10 andy~ >Yr] 
k lYt 0.10 0.20 0.30 0.40 0.50 0.60 0.7¢) 0.80 0.90 

0.04 1 0.0 )5.2 49.6 54.6 5~.) '~).8 50.5 45.1 )6.1 19-9 
0.3 27.7 42.0 47.1 48.31 47.6 45.6 41.8 )4.8 19.8 

MN 0.0 27.9 )8.4 431.7 46.2 47.0 46.2 4) .7 )8.4 27.9 
0, )  21.2 31.) 316.4 ].8.8 39.6 )8.8 ~ . 4  31.) 21.2 

M (  0.0 2).5 31.7 35.9 38.3 )9.4 39.5 ~ . )  35.31 ~8.7 
0.3 21.5 28.9 ~2.7 34.7 35.6 ~5.3 33.9 30.6 23.9 

0.06 1 0.0 54.9 65.7 68.~ 68.3 67.0 64.3 59.9 52.4 ~.7.0 
0 . )  47.1 57.8 60.6 61.2 60.7 59.) 56.6 51.1 37.0 

MN 0.0 4) .0 531.8 58.6 60.9 61.5 60.9 58.6 5).8 43.C, 
0.31 )5.7 46.2 5U.9 5).1 5).7 5 ) . I  50.9 46.2 )5.7 

M(" 0.0 )5.8 44.8 49.4 52.0 53.3 ~,3.6 52.7 50.0 42.9 
0.) 312.7 40.9 44.9 47.1 48.1 48.0 46.6 4) . )  35.8 

0.08 I 0.0 66.9 74.0 7~.7 75.7 74.5 72.4 68.9 6~.7 49.4 
0.31 58.9 66.0 67.9 68.4 68.1 67.)  65.5 61.4 49.) 

MN 0.0 5).8 631.6 67.7 69.6 70.2 69.6 67.7 6).6 5).8 
0.31 46.2 55.8 59.8 61.6 62.2 61.6 59.8 55.8 46.2 

MC 0.0 44.9 5).8 58.2 60.7 62.1 62.6 62.0 59.7 53.1 
0,31 41.0 49.1 52.9 55.0 56.0 56.0 54.8 51.8 44.) 

0.10 0.0 7).9 79.1 80.4 80.) ?9.4 77.6 74.7 69.5 58.1 
0.31 65.7 71.0 72.5 731.0 72.9 72.5 71.) 68.2 58. I 

MN 0.0 61.5 70.2 731.7 7~.) 75.7 75.) T].7 70.2 61.5 
0.31 531.7 62.2 65.6 67.2 67.6 67.2 65.6 62.2 53.7 

MC 0.0 51.7 60.2 64.31 66.7 68.1 68.6 68..', 66.4 60.7 
0. )  47.2 54.9 58..5 60.5 61.4 61.4 60.4 57.6 50.6 

0.12 0.0 78.) 82.5 83,5 83.5 82.7 81.2 78.7 74.31 64.4 
0.~ 70.1 74.4 7'5.7 76.1 76.2 76.0 "/~.~ 72.9 64.3 

MN 0.0 67.2 74.8 77.8 79.2 ?9.6 79.2 77.8 74.8 67.2 
0.) 59.) 66.7 69.7 71.0 71.4 71.0 69.7 66.7 59.) 

MC 0.0 57.0 64.9 6~,8 71.0 72.4 7).0 72.7 71.1 65.9 
0.31 52.0 59.2 62.6 64.4 65.31 65.) 64.3 61.7 54.9 

0.14 0,0 81.5 85.0 85.8 85,.8 85oi 8).8 81.6 77.8 69.2 
0.) 731.2 76.8 77.9 78.4 ?8.6 78.6 78.2 76.4 69.0 

MN 0.0 71.5 78.2 80.9 ~,I 82.4 82.1 60.9 78.2 71.5 
0.31 6).4 70.0 7~.6 731.8 74.2 731.8 ?2.6 70.0 63.4 

MC 0.0 61.1 68.6 ?2.2 74.) 75.6 76.2 76.0 74.6 69.6 
0.31 55.8 62.6 65.7 67.4 68.2 68.2 67.2 64.7 58.0 

0.16 0.0 83.8 86.8 87.6 87.5 86.9 85.8 8).9 80.5 72.8 
0.31 7~.5 78.6 ?9.7 80.1 80.4 80.6 80.5 79.1 ?2.7 

MN 0.0 74.8 80.8 8).2 84.) 84.6 84.) 83.2 80.8 74.8 
0.31 66.7 72.6 74.9 76.0 76.~ 76.0 74.9 ?2.6 66.7 

MC 0.0 64.5 71.5 74.9 76.9 78.1 78.7 78.7 77.~ 7~.~ 
0.31 58.9 65.2 68.2 69.7 70.5 70.5 69.6 67.2 61.~ 

0.18 0.0 85.6 88.31 89.0 88.9 8~.) 87.) 8~.6 82.6 75.7 
0.3 ' ~ . )  80.1 81.0 81.5 81.8 82.1 82.2 81.2 7~.6 

MN 0.0 77.4 8~.9 85.0 86.0 86.2 86.0 8~.0 82.9 77.4 
0.3 69.3 74.6 76.7 77.6 77,9 77.6 76.7 74.6 69.)  

MC 0.0 67.2 7~.9 T'/.1 ?9.0 BO.2 80.8 80.9 80.1 77.2 
0. )  61.4 67.4 70.2 71.6 . 72.31 ?2.3 71.5 69.5 64.) 

0.20 0,0 87.1 89.5 90,0 90.0 89,5 88.6 87.0 84.) 77.9 
0.31 78.? 81.2 82,1 82,6 831.0 831,4 8).6 ~ . 9  "/8.0 

MN 0.0 ?9.6 84.6 86.5 87.) 87.6 87.31 86.5 84.6 ?9.6 
0.)  71.4 76.) 78.1 79.0 ?9.2 ?9.0 78.1 76.) 71.4 

MC 0.0 69.6 7%9 78.9 80.7 81.8 82.5 82.T ~ . 2  ?9.6 
0.31 6).6 69.2 71.8 7) .2  T).8 7).8 7~.1 71.2 66.4 

0.22 0.0 88.2 9u.4 9o.9 90.9 90.4 89.6 88.2 8~.2 79.? 
0.31 "/9.9 82.2 8).0 8).5 831.9 84.4 84.8 84.) 80.1 

MN 0.0 81.4 8~.9 87,7 88.5 88.7 88.5 87.7 8").9 81.4 
0.31 73.1 77.6 79.) 80.1 80.) e0.I ?9.) 77.6 731.1 

M(" 0.0 71.6 77.6 80.4 82.2 8:..3 85.9 84.1 8:,.6 81.1 
0.31 65.4 70.8 731,2 74.5 "~.1 7~.1 74.4 "/'2.5 67.6 

0.24 0,0 89.2 91.2 91.7 91.6 91.2 90.4 8<).2 86.6 81,3 
0.31 80.8 82.9 B).7 84.2 114.7 85.2 83.8 85.5 81.9 

MN 0.0 82.9 87.1 ~.7 89.4 89.6 89.4 88.? U?.1 82.9 
0. )  74.6 78.7  80.31 81.0 81.2 81.0 8~.) 78,7  74.6 

M (  0.0 7).3 ?9.0 81.7 8).4 84.3 85.1 85.) 84,8 82.2 
0.31 67.0 72.1 74.4 ~ , 6  76.2 76.1 ?~.4 73.5 68.) 

0.26 0,0 90,0 91.9 92.) 92,) 91,9 91.2 9u.O 87,8 82,9 
0.)  81.6 8).6 84.31 84.8 85.4 86.0 86.6 86.5 B).) 

MN 0.0 84.2 88.1 89.6 90.2 90.4 90.2 89.6 88.1 84.2 
0. )  T~.9 79.T 81.2 81.8 82.0 81.8 81.2 ?9.7 "/~.9 

MC 0.0 74.8 80.) 82.9 84,4 8~,5 86,0 86.2 8),6 8) .0 
0 . )  68,4 T).2 7~.4 76.6 7'7,1 77.0 76.2 ?4.2 69.2 

0,28 1 0.0 90.8 92.) 92.9 92,8 92,5 91.8 90.? m.? 84,4 
0,31 82,31 84,2 84.9 85,4 85,9 86.6 87.) 87.4 84.4 

MN 0.0 85.) 88.9 9o.) 9o.9 91.1 9o,9 9o.) 88,9 8~,) 
0. )  ?7.0 80,5 81.9 ~ . }  82.7 89.5 81.9 80,5 77,0 

MC 0,0 76.2 81.4 83.9 85.4 86.) 86.9 8?.0 86.3 83.6 
0,31 69.6 74.2 ?6 . )  77.4 77.9 77.? 76.9 ?4.8 69,? 

0.)0 I 0.0 91.4 9).0 9).31 9 ) . )  9) .0 92.)  91.3 89.5 8~.8 
0.3 8).0 84.? 85.4 85.9 86,4 87.1 87.9 88.2 B~.2 

MN 0.0 86.2 89.6 9u.9 91.5 91.7 91.} 90,9 89.6 86 .2  
0.)  77.9 81.2 1~.5 8).1 8).2 8).1 82.) 81.2 77.9 

MC 0,0 77,4 8~.4 ~14.7 06,2 87.1 87.5 87.6 86.9 84,1 
0 . )  70.? "~.1 77.1 78.1 '/8.5 78,4 7"/*5 7~.31 70,1 

k ~ iy t ~- 2 ~0.10 0.20 0.)0 0.40 0.50 0.60 0.70 0.80 0.90 

0.04 0.0 11.5 20,2 26.0 28.7 28.4 2D.6 20.2 12.4 ) . I  
0 . )  4.7 8.~ 10.6 11.7 12.0 11.5 10.2 8.0 4.2 

MN 0.0 9.8 15.7 19.) Z l . )  21.9 21.)  I%)  15.7 9.8 
0 . )  ').0 10,0 I ) . )  15.1 15.6 15.1 13.) 10.0 5.0 

MC 0.0 8.6 13.1 15.b 17.0 1"1.:) 17.) I~ . )  14.4 11.0 
0. )  5.2 13.4 19.2 2~'.2 2~.7 ~1.0 17.) !1.)  ) .0  

0.06 ,-'.0 2).0 )6 . )  42.7 44.5 45.) 39.8 )4.0 24.8 10.4 
0. )  11.2 17.4 20,? 22.4 2).0 22.5 20,8 17.4 11.1 

MN 0.0 18.8 27.8 32.7 35.2 )5.9 )5.2 =.2.7 27.8 18.8 
0. )  12.8 21.2 25.8 28.2 29.0 28.2 25.8 21.2 12.8 

MC 0,0 16.2 22.9 26.6 28.6 ~x).5 29.4 28.1 25.4 20.0 
0.31 15.9 29.0 35.5 ~?.7 ~,7.) 35.0 30.8 23.6 10.4 

0.011 0.0 )5.1 49.6 =)4.6 55.7 5).8 )0.5 45,0 ~ . I  19.8 
0. )  17.9 25.5 29.4 )1.5 ) 2 . )  311.9 310.1 26.31 18.4 

MN 0.0 27.8 38.4 431.6 46.2 47.0 46.2 43.6 ]8.4 27.8 
0 . )  21,2 )1. )  36.4 318.8 59,6 )8,8 )6.4 311.) 21.2 

MC o.o 2 ) . )  31.6 ) ) .9  38.) 39.4 ]9.4 ~ . 2  ]~ . }  28.7 
0.3 27.7 42.0 47.1 48.5 47.6 45.6 41.8 314.8 19.8 

0.10 0.0 46.0 59.1 6~.6 611'.8 61.4 )8.4 5).4 45.2 29.0 
0 . )  24.1 )2.4 )6.5 )8.7 319.6 )9.4 )7.7 ) ) . 8  25.1 

MN 0,0 ]5 .9 47.0 52.1 54.) 55.2 54.5 52.1 47.0 )5.9 
0. )  ~J.0 )9.6 44.5 46.9 47.6 46.9 44.5 39.6 29.0 

MC 0,0 30,1 38.9 43,4 45.9 47,2 47.) 46.3 43.4 316.) 
0 . )  )8.4 51,) ,55.0 55.8 55.1 5).4 50.2 4).9 28.9 

0.22 0.0 )4.9 65.7 68.2 68.3 66.9 64.3 )9.9 52.4 37.0 
0 . )  29.4 38.0 42.2 44.) 45.5 43.3 431.7 ]9.9 311.0 

MN 0.0 42.9 5}.8 58.6 60.8 61.5 60.8 58.6 5).8 42.9 
0.31 35.7 46.2 50.~ 5~.1 53.7 531.1 50.9 46.2 35.7 

MC 0.0 55.8 44.8 49.3 51.9 5).3 53.6 52.7 50.0 4~.9 
0. )  47.1 57.8 60.6 61.2 60.7 59.31 56.6 51.1 )7.0 

0.14 0.0 61.7 70.4 "/2.4 72.4 71.2 68.8 64.9 58.1 43,7 
0. }  }4.1 42.? 46.9 4).1 5C. 1 50.0 48.5 44.9 316.0 

MN 0.0 48.8 319.2 6).6 65.7 66.) 65.7 63.6 59.2 48.8 
0, )  41.4 51.5 55.8 57.8 58.4 57.8 55.8 5%5 41.4 

MC 0,0 40.7 49.7 54.2 56.7 58.1 38.5 57.8 55.) 48.4 
0.31 53.8 63.$ 64.1 6~.2 64.9 6).8 61.6 56.8 431.7 

0.16 0.0 66.9 74.0 7~.7 7~.6 74.~ 72.4 68.8 62.7 49.4 
0. )  ~ .1  46.6 50.7 52.9 5) .9  53.8 52.5 49.0 40.) 

MN 0.0 53.8 63.6 67.7 69.6 70,1 69.6 67.7 6).6 }~.8 
0.31 46.2 5~.8 59.8 61.6 62.2 61.6 59.8 55.8 46.2 

M(" 0.0 44.9 ~)).8 58. I 60.7 62. ~ 62.5 62.0 59.7 5~1.1 
0. )  )8.9 66.0 67.9 68.4 68. 67.) 65.5 61.4 49.) 

0.18 0,0 70.8 76.8 78.2 ?8.2 77.2 75.2 72.0 66.4 {)4.1 
0.31 41.6 49.9 5).9 56.0 57.0 57.0 55.7 52.4 44.0 

MN 0.0 57.9 67.2 70.9 "/2.7 73.2 "/2.7 70.9 67.2 317.9 
0,3 SO.) ~9.) 631.0 64.7 65.2 64.7 63.0 5%) 50.31 

MC 0.0 48.5 57.2 61.4 631.9 65.3 65.8 65.4 63.31 57.1 
0.31 62.7 68.8 70.5 70.9 70.8 70.1 68.7 65.1 54.1 

0.20 0,0 "PJ.8 ?9.1 80.) 80.2 79,) 77.6 74.6 69.5 58.1 
0. )  44.6 52.7 56.5 ~8.6 ~ . 6  59.6 58.4 35.3 47.2 

MN 0.0 61.} 7,a.I "PJ.6 75.2 75.7 75.2 7).6 70.1 61.~ 
0.)  31).7 63.2 631.6 67.2 67.6 67.2 6).6 62.2 5).7 

MC 0.0 51.7 60.1 64.2 66.6 68.0 68.6 08.2 64.4 60.6 
0. )  65.7 71.0 T~.5 73.0 ?2.9 "/'2.5 71.) 68.2 50.1 

0.22 0.0 76.3 80.9 82.1 8~.0 81.1 ?9.5 76.8 "/2.1 61.) 
0.$ 47,) ~5.2 58.9 60.9 61.8 61.8 60.7 .%7.7 49.9 

MN 0.0 (~..5 7'2.6 7'...9 77,4 77.8 77.4 75.9 '/2.6 64.5 
0.31 }6.7 64.6 67.8 69,2 69.7 69.2 67.8 64.6 ~6.7 

MC 0.0 54,5 62.7 66.6 69.0 70.~ 70.9 70.6 641. 9 6),5 
0.~ 68.1 ?2.8 74.2 74.7 74.7 74.4 T}.5 70.7 61.4 

0.24 0.0 78.3 ~.~; 1~.5 8.~.4 IkT.6 81.1 78.6 74.2 64.4 
0.3 49.7 57.) 60.9 69,8 63.7 63.7 62.6 ~).7 52.0 

MN 0.0 67.2 74.8 77.8 ?g.2 ?9.6 ?9.2 77.8 74.8 67.2  
0.)  ~ j . )  t~,.7 69.7 71.0 71.4 71..9 69.7 66.7 ~).31 

MC 0.0 ~6.9 64.9 48.7 71.0 72.) 72.9 T~.7 71.1 65.8 
0. }  70.1 74.4 7t).7 76.1 76.2 76.0 7~.) 1~.9. $4.) 

0.26 0.0 80.0 83.8 84.7 04.7 83.9 89.) 80.2 "/15. I 66.9 
0 . )  51.8 ~J.2 62.6 64.5 6%4 6~.4 64.) 61.4 ) ) .7  

MN O.v 69.4 76.6 1~.4 UOo7 81. I IFI. 7 79,4 7~.6 69.4 
0.3 61.5 68.:) 71.3 ?2.~ 7~.9 "r~'.. 5 71.) 68.§ 61.~1 

MC 0.0 ~ .1  66.8 70.5 ?2.7 74.0 74.6 74.4 72.9 67.7 
v.3 71.8 7~,.7 ?6.9 77.3 77.~ 77.4 ?1.9 74.8 66.9 

U,Z8 0.0 81.4 14. y itS.8 05.7 8~.0 83.7 81.6 77.8 69.1 
0.)  53.7 60.8 64.2 66.0 66.8 66.8 65.8 83.0 55.4 

MN 0.0 71.4 70.~ ~I~.8 I~.0 82.4 Ig.O 80.8 111.2 71.4 
~;.) 63.4 7"v.0 7~.6 7~.8 74.2 7~.8 7~.6 ?0.0 63.4 

MC 0.o 61.1 ~s.5 "~.1 74.3 7%5 "hi.! 76.0 74.$ 69.5 
0. )  ~ . 2  "M.8 77.9 ;0.4 ?8.6 ?8.6 7W.2 ?6.4 69.0 

O.310 a.O t~2.7 8~.9 m.7 1~..7 ~. .0 114.11 ~ . 0  ?9.2 71. I 
J. 3 ~5.4 62.~ 45.5 67.~ bU.I 68.1 47.1 64.4 57. |  

MN o.0 ~ . 2  ?9.6 ~ .  ~ ~ . 2  83.5 ~ . 2  88.1 ?9.6 ~ . 2  
0.)  65.2 71.4 7~.9 7%V 7%31 "~.0 71.9 71.4 65.~ 

MC 0.3 63.8 "f0.1 73.6 1~.6 7i .9 7%) 77.4 ? I , I  71,4 
0.3 74.4 77.8 78.9 "~J*3 ?~.6 ?9.7 ?9.4 77.9 71o0 
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Fig. 1. The variation of f t (0 -1 )  as a function of  the truncation limit 
Yt for different fixed values of o 2 and k for the many-atom (P = 
MN) case. The curves (a), (b) and (c) are for k = 0.08, 0.15 and 
0.3 respectively. The numbers near the curves denote the value of 
02. Note that f t (0 .1)  denotes the fractional number of reflections 
for which X > O. 1 and y s  > Yr. 

that the Bijvoet difference data corresponding to 
reflections for which YN -> 0.3 are sufficiently accurate 
to yield useful results. A study of Table 1 with this in 
view shows that a sufficient fractional number of 
observable reflections (i.e. YN > 0.3) would have Bijvoet 
ratios greater than 0.05 unless k is too small. For a 
typical situation in which k is low, k _ 0.08, say (this is 
close to the mean value of k for C1 and Br for Cu Ka), 
and P = 1 and o 2 -- 0.2, about 66% of the reflections 
are expected to have X >_ 0.05 and YN -> 0.3. For the 
same situation about 42% of the reflections are 
expected to have X _> 0.1 and YN > 0.3 (Table 2). For 
the situation where k is large, k = 0.22, say (this is 
close to the mean value of k for I for Cu Ka and Br for 
Mo Ka), and P = 1 and o 2 = 0.2, these numbers are 81 
and 71% respectively. The results in Tables 1 and 2 
thus indicate that though data truncation due to 
unobserved reflections would in general cause a 
decrease in the fractional number of reflections whose 
Bijvoet differences could be measured, it would not 
adversely affect the measurability of Bijvoet differ- 
ences in a given crystal. That is, in spite of the 
unavoidable data truncation arising due to unobserved 
reflections, Bijvoet differences can be measured for a 
sufficiently large number of reflections for the purpose 
of phase determination by the anomalous scattering 
methods. This in turn implies that non-centrosym- 
metric structures containing hundreds of light atoms 
besides a few suitably chosen heavy atoms can be 
determined by exploiting the anomalous scattering 
phenomenon in an optimum way (Ramachandran & 
Parthasarathy, 1965) in spite of data truncation due to 
unobserved reflections. 

It would be interesting to apply the results of our 
present theory for studying the measurability of Bijvoet 

Table 3. The value of f t (X  o) (in %) corresponding to 
X 0 = 0 .03 ,  0 .05  and O. 1 as functions o fy  t and aEfor 

the many-atom (P = MN) case when k = 0 .011  

×o a~ 

7t  l O. 1 0.2 0.~ 0.4 0.5 
0.9 0.8 0.7 0.6 

o.oo o.o~ e.p 1~.7 1'7.o 18.8 19.4 
0.0~ ~.~ ~ .7  7.~ ~.2 8.5 
0.10 0.9 1o5 2.0 2.2 2.3 

0.05 0.0~ 8.2 1~,5 16,6 t~,6 19,1 
0.05 ~. 1 5.5 7.0 7.9 8.2 
0.10 0.7 1.3 1.8 2.0 2.1 

O. 10 0.0~ 7,6 12.9 16.1 17.9 18.5 
0.05 2.6 4.9 6.4 7.3 7.6 
o. 10 O. 4 0.9 1.3 1.6 1.7 

O. 15 0.03 6.8 11.9 15.1 16.9 17.5 
0.0~ 2.0 4.1 5.6 6.5 6.8 
O. 10 0.2 0.5 0.9 1.1 1.2 

0.20 0.03 5.8 10.8 13.9 15.7 16.2 
0.0~ 1.4 3.3 4.7 5.6 5.8 
o. 10 0.0 0.3 0.5 0.7 0.7 

0.25 0.03 4.8 9.6 T2.6 14..~ 14.8 
0.0~ 0.9 2.5 3.8 4.6 4.8 
0 .10  0.0 0.1 0.3 0.4 0.4 

0.30 0.03 4.2 8.3 11.1 12.8 13.3 
0.05 0.5 1.9 3.0 3.6 3.9 
0.10 0.0 0.0 0.1 0.2 0.2 
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differences in light-atom structures. The values of 
ft(X0) corresponding to X 0 = 0.03, 0.05 and 0.1 a n d y  t 
= 0, 0.05 . . . .  , 0 . 3  are given in Table 3 for the cases 
P = M N  by taking the value of k to be 0.011 which 
corresponds to the mean value for k for the O atom in 
the range 0 _< sin 0/2 _<0.5 for Cu Ka radiation. 
Results in Table 3 can be applied to light-atom 
structures containing only C and O since these have 
been computed on the assumption that k for C 
corresponding to Cu Ka is very small compared to that 
for O. A stody of this table shows that more than a 
dozen reflections can be found for which X _> 0.05 and 
YN -> 0.2. This again shows that in spite of the data 
truncation due to unobserved reflections, Bijvoet 
differences could be measured for enough reflections 
for establishing the absolute configuration of an NC 
structure containing only light atoms by the Bijvoet 
method. 

requires that Pt(Yl ,  Y2 . . . .  , y , )  be related to P(yl ,  Y2, 
. . . .  Yn) by 

Pt(Yl,  Y2, " " ", Yn) = P(.Yl, Y2, " " ,  Yn) 

[;f x 7 P ( Y l , Y 2 , . . . , Y n ) d y , , d Y 2 , . . . , d Y  . (,42) 
t 0 

We can rewrite the denominator of the expression on 
the r.h.s, of (A2) as 

o o o o  oo 

f f . . .  f P(Y, ,  Y2 . . . .  , Yn) dye, dY2 , . . . ,  dy,, 
y~ o o 

oo oo oo 

= f dy~ f . . .  f P(Y~,Y2 . . . .  ,Yn) dY2, " " ,  dYn 
y~ o o 

oo 

= f P(Y l )dY l ,  
yl 

(A3) 

APPENDIX 

Method of deriving probability density functions for 
truncated distributions 

We can define different types of truncated distributions 
in multi-dimensional spaces since the concept of 
truncation can be applied to the interval of definition of 
each one of the random variables involved. However, in 
the text we meet with situations where truncation 
occurs for the interval associated with only one of the 
random variables defining the joint p.d.f. We shall 
therefore obtain presently the formula needed for 
deriving the truncated distribution for such a situation. 

Let Yl be a random variable with the p.d.f. P(yl)  
defined in 0 < yl  _< ~ .  Let Y2, " "  " ,  YN be random 
variables such that P(Yl, Y2, . - . ,  Yn), 0 < Yt < oo (i = 1, 
2, . . . ,  n), is the joint p.d.f, ofy~, Y2,.. - ,  Yn- 1 and y,,. Let 
Pt(Yl,  Y 2 ,  " '  " ,  Yn) be the joint p.d.f, for the truncated 
distribution when the random variable yl is restricted to 
lie in the interval* yt < y~ < ~ .  (Note that 0 < Yt < ~ 
for i = 2, 3 , . . . ,  n.) That is, 

P t ( Y l , Y E , ' " , Y n ) ¢ O ,  yt_<yl  <(xD, 

0 < y i  < oo( i=  2, 3 , . . . ,  n) 

= 0 otherwise. (A 1) 

The normalization condition for the truncated distri- 
bution defined in yt < yl < oo, 0 < Yi < ~ ,  i = 2, 3 , . . . ,  

which follows since carrying out the (n - 1) inte- 
grations over the variables Y2, Y3, • • " ,  Yn leads finally to 
the marginal p.d.f, ofy~ (in 0 < y~ < oo). Making use of 
(,4 3) in (A 2) we obtain 

P(YlY2 . . . .  , Yn) 
Pt(Yl, Y2' " • "' Yn) = 

oo 

f P(Yl) dY2 

P ( Y l ,  Y 2  . . . .  ' Yn) 
fl (A4) 

say, where fl is defined to be 

oo 

f l =  f P(y~)dyl.  (A5) 

Making use of the normalization condition for the p.d.f. 
o fy  1 we can also rewrite (A 5) as 

/ ~ =  1 - y P ( y , )  dy ,  = 1 - N ( y  t )  = NC(y~),  ( ,46) 
0 

where N(y~) and NC(y~) are respectively the values of 
the c.f. and c.c.f, of yl  for Yl = yt. 

It may be noted here that, for the sake of simplicity, 
we have taken the intervals from 0 to oo. However it 
may be readily seen that (A4) is valid even if the 
original intervals themselves are other than 0 to oo for 
some or all of the variables Y2, • • " ,  Yn" 

* Although we could define different types of truncated distri- 
butions based on the kind of truncation of the interval 0 _< y~ < oo 
we shall consider only one type of truncation, namely, the 
truncation of this interval at the lower end since we meet with such a 
kind of truncation only in this paper. For example, y~ corresponds 
to the threshold value of the normalized structure amplitude YN. 
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Abstract 

An a priori approach to the prediction of required 
neutron beam time for single-crystal analysis of 
biological structures is presented. Time economy is 
determined by several main features: (i) tolerable 
inaccuracy of the Fourier map, (ii) method of extract- 
ing phase information, (iii) data-collection technique. 
Phasing by anomalous scattering at two wavelengths is 
considered. An expression is derived for the error in 
scattering density arising from experimental intensity 
errors. Application of the theoretical probability dis- 
tributions for the intensities leads to an equation for the 
expected total counting time. Conditions are estab- 
fished for which the time expenditure is a minimum. 
Tables which aid easy application of the results are 
given as well as a numerical example. 

1. Introduction 

The work of Schoenborn and his colleagues (Schoen- 
born, 1969; Norvell, Nunes & Schoenborn, 1975) has 
shown that neutron diffraction can be applied success- 
fully to protein crystals. Protein neutron diffraction 
aims at the elucidation of structural features, par- 
ticularly hydrogen atoms, which are not accessible to 
X-rays. The most serious problem of such work is the 
time and expense involved in data collection. In general, 
the practicability of a neutron study depends on the 
request for beam time. 
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Neutron diffraction offers the possibility of tackling 
the phase problem by means of anomalous scattering 
from nuclei such as llaCd, 14aSm or 157Gd. This method 
has been used to solve several small crystal structures 
(e.g. Koetzle & Hamilton, 1975; Sikka & Rajagopal, 
1975). Results of an application to a protein structure 
have been reported by Schoenborn (19 75). 

The present paper is concerned with the prediction of 
experiment time when neutron anomalous scattering is 
used for phase determination. Its purpose is to provide 
a basis for experiment planning. The problem is 
approached by an analysis of the expected errors in the 
density map. 

2. Tolerable density error 

2.1. Error model 

If series termination effects are not considered the 
true scattering density is defined by the truncated 
Fourier series 

p ( r ) - / 3  + V - 1 Z  Fn c o s ( 2 z t H . r -  tpH), (1) 

where V = unit-cell volume, /3 = Fo/V = average 
scattering density, ~0 H = phase angle of structure factor 
F H, H -- reciprocal-lattice vector, and the summation is 
carried over a sphere in reciprocal space, up to a radius 
H0. 

The expected accuracy of the density can be 
predicted if a model for the errors in the Fourier 
components and a specific error criterion is assumed. 
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